Study for Backend/Data Structure
[Data structure 기초 연습] ArrayList로 최소/최대 힙 구현
지미니박
2024. 3. 15. 18:03
import java.io.IOException;
import java.util.ArrayList;
//비선형자료구조 힙
//ArrayList로 최소 힙 구현
class MinHeap{
ArrayList<Integer> heap;
public MinHeap(){
this.heap = new ArrayList<>();
this.heap.add(0);
}
public void insert(int data){
heap.add(data);
int cur = heap.size() - 1; //insert 하는 곳
while (cur > 1 && heap.get(cur / 2) > heap.get(cur)){ //비교
int parentVal = heap.get(cur / 2);
heap.set(cur / 2, data);//스왑
heap.set(cur, parentVal);
cur /= 2;
}
}
public Integer delete(){
if (heap.size() == 1){
System.out.println("Heap is empty!");
return null;
}
int target = heap.get(1);
heap.set(1, heap.get(heap.size() - 1)); //마지막 데이터 세팅
heap.remove(heap.size() - 1 );
int cur = 1; // 최상위 노드
while (true){
int leftIdx = cur * 2;
int rightIdx = cur * 2 + 1;
int targetIdx = -1;
if (rightIdx < heap.size()){
targetIdx = heap.get(leftIdx) < heap.get(rightIdx)? leftIdx : rightIdx ;
}else if (leftIdx < heap.size()){
targetIdx = cur * 2;
}else { //자식노드가 없는 상황이면
break;
}
//선정한 값을 부모와 비교
if (heap.get(cur) < heap.get(targetIdx)){
break;
}else{
int parentVal = heap.get(cur);
heap.set(cur, heap.get(targetIdx));
heap.set(targetIdx, parentVal);
cur = targetIdx;
}
}
return target;
}
public void printTree(){
for (int i = 1; i < this.heap.size(); i++) { //0은 더미데이터
System.out.print(this.heap.get(i) + " ");
}
System.out.println();
}
}
public class heap {
public static void main(String[] args) throws IOException {
MinHeap minHeap = new MinHeap();
System.out.println(" === 데이터 삽입 === ");
minHeap.insert(30);
minHeap.insert(40);
minHeap.insert(10);
minHeap.printTree();
minHeap.insert(50);
minHeap.insert(60);
minHeap.insert(70);
minHeap.printTree();
minHeap.insert(20);
minHeap.printTree();
minHeap.insert(30);
minHeap.printTree();
System.out.println();
System.out.println(" === 데이터 삭제 === ");
System.out.println("삭제 : " + minHeap.delete());
minHeap.printTree();
System.out.println("삭제 : " + minHeap.delete());
minHeap.printTree();
System.out.println("삭제 : " + minHeap.delete());
minHeap.printTree();
}
}
import java.io.IOException;
import java.util.ArrayList;
//비선형자료구조 힙
//ArrayList로 최대 힙 구현
class MaxHeap{
ArrayList<Integer> heap;
public MaxHeap(){
this.heap = new ArrayList<>();
this.heap.add(0);
}
public void insert(int data){
heap.add(data);
int cur = heap.size() - 1; //insert 하는 곳
while (cur > 1 && heap.get(cur / 2) < heap.get(cur)){ //비교 수정
int parentVal = heap.get(cur / 2);
heap.set(cur / 2, data);//스왑
heap.set(cur, parentVal);
cur /= 2;
}
}
public Integer delete(){
if (heap.size() == 1){
System.out.println("Heap is empty!");
return null;
}
int target = heap.get(1);
heap.set(1, heap.get(heap.size() - 1)); //마지막 데이터 세팅
heap.remove(heap.size() - 1 );
int cur = 1; // 최상위 노드
while (true){
int leftIdx = cur * 2;
int rightIdx = cur * 2 + 1;
int targetIdx = -1;
if (rightIdx < heap.size()){
//자식노드들 중에 큰 값을 선택
targetIdx = heap.get(leftIdx) > heap.get(rightIdx)? leftIdx : rightIdx ;
}else if (leftIdx < heap.size()){
targetIdx = cur * 2;
}else { //자식노드가 없는 상황이면
break;
}
//선정한 값을 부모와 비교. 새로 넣은 값이 노드값보다 더 크면 수정
if (heap.get(cur) > heap.get(targetIdx)){
break;
}else{
int parentVal = heap.get(cur);
heap.set(cur, heap.get(targetIdx));
heap.set(targetIdx, parentVal);
cur = targetIdx;
}
}
return target;
}
public void printTree(){
for (int i = 1; i < this.heap.size(); i++) { //0은 더미데이터
System.out.print(this.heap.get(i) + " ");
}
System.out.println();
}
}
public class heap2 {
public static void main(String[] args) throws IOException {
MaxHeap maxHeap = new MaxHeap();
System.out.println(" === 데이터 삽입 === ");
maxHeap.insert(30);
maxHeap.insert(40);
maxHeap.insert(10);
maxHeap.printTree();
maxHeap.insert(50);
maxHeap.insert(60);
maxHeap.insert(70);
maxHeap.printTree();
maxHeap.insert(20);
maxHeap.printTree();
maxHeap.insert(30);
maxHeap.printTree();
System.out.println();
System.out.println(" === 데이터 삭제 === ");
System.out.println("삭제 : " + maxHeap.delete());
maxHeap.printTree();
System.out.println("삭제 : " + maxHeap.delete());
maxHeap.printTree();
System.out.println("삭제 : " + maxHeap.delete());
maxHeap.printTree();
}
}